
724 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Highly Regular, Modular, and Cascadable Design of
Cellular Automata-Based Pattern Classifier

Santanu Chattopadhyay, Shelly Adhikari, Sabyasachi Sengupta, and Mahua Pal

Abstract—This paper enumerates a new approach to the solu-
tion of classification problems based on the properties of Additive
Cellular Automata. Classification problem plays a major role in
various fields of computer science, such as grouping of the records
in database systems, detection of faults in VLSI circuits, image pro-
cessing, and so on. The state-transition graph of Non-group Cel-
lular Automata (CA) consists of a set of disjoint trees rooted at
some cyclic states of unit cycle length-thus forming a natural classi-
fier. First a scheme of classifying the patterns distributed into only
two classes has been dealt with. This has been further extended
for solution of the multiclass classification problem. The Multiclass
Classifier saves on an average 34% of memory as compared to the
straight-forward approach storing directly the class of each pat-
tern. A regular, modular, and cascadable hardware implementa-
tion of the classifier has been presented which is highly suitable for
VLSI realization. The design has been specified in Verilog and ver-
ified for functional correctness.

Index Terms—Cellular automata, hardware classifier, pattern
classifier, very large scale integration (VLSI) circuits.

I. INTRODUCTION

T HE ABILITY of machines to perceive their environment
is limited. The apparent ease with which the vertebrates

and insects perform their perceptual tasks is at once encour-
aging and frustrating. Psychological and physiological studies
have provided many interesting facts, but nothing is sufficient
to duplicate their ability by computers. A modest problem
emerging in this field is pattern classification—the assign-
ment of physical object or event to one or more prespecified
categories [1]. However, the problem of classification can be
identified in almost any field—be it the grouping of the genetic
codes, chemical compounds, database records, or VLSI fault
diagnosis. Neural networks is one of the modern methodolo-
gies for solving the classification problem. But the design of
neural network-based circuits become far more intriguing and
complex when the membership criteria becomes complicated.
In this work, an elegant solution based on Cellular Automata
(CA) has been reported for solving the generic classification
problem. It has been found from the experimental results that
the memory requirement in CA-based approach is much less
as compared to the case where the class of individual patterns
are stored directly. The scheme can be efficiently implemented

Manuscript received May 17, 1999; revised April 12, 2000.
S. Chattopadhyay is with the Department of Computer Science and Engi-

neering, Indian Institute of Technology, Guwahati, India.
S. Adhikari is with Delsoft India Pvt. Ltd., Noida, Uttar Pradesh 201 303,

India.
S. Sengupta is with Wipro Technologies, Sri Chamundi Complex, Bommana-

hali, Bangalore 560 068, India.
M. Pal is with WIPRO Infotech, Calcutta 700 071, India.
Publisher Item Identifier S 1063-8210(00)10103-9.

by a highly regular, modular, and cascadable hardware struc-
ture—the three essential qualities the VLSI designers look for.

CA consist of a number of cells interconnected in a regular
manner.Von Neumann[2] proposed a model of universal ma-
chines (a cellular space) involving 5-neighborhood cells each
having 29 states. The theory of CA received consolidation by
Burks [3] and considerable simplifications were subsequently
introduced by Codd [4]. Wolfram [5]–[7] pioneered the investi-
gation of CA as mathematical models for self-organizing statis-
tical systems and suggested the use of a simple 2-state, 3-neigh-
borhood CA with cells arranged linearly in one dimension. Each
cell essentially comprises of a memory element and a com-
binational logic that generates the next-state of the cell from
the present-state of its neighboring cells—left, right, andself.
Martin [8] used polynomial algebraic tools to derive some char-
acterization ofperiodic boundary uniformCA with identical
CA rule applied to each of the cells. A new era of research on
theory and applications of CA has been initiated with the work
of Das [9]–[11], that dealt with analytical characterization of
CA behavior based on matrix algebraic tools. This technique
is capable of characterizingperiodic/null boundaryhybrid CA
with different rules applied to different cells. A CA with non-
singular characteristic matrix is termed asGroup CA, else it is
calledNongroup CA. The state-transition behavior of group CA
is characterized by the fact that every state has got a unique
predecessor. Whereas in a nongroup CA, the number of pre-
decessors is either zero, or, for some . Group CA has
been studied extensively in [8], [10]–[14]. Many realistic ap-
plications have also been reported—pseudo-random[12], [13]
andpseudo-exhaustive pattern generation[11], [15], signature
analysis[14], [16], [17], error-correcting codes[18], andcryp-
tography [19]. However, the study of nongroup CA behavior
has not been given due attention in the past. A particular class
of nongroup CA referred to as CA is studied in details and
used for synthesis of testable FSM [20]. Non-group CA has also
been utilized to design efficient hashing functions [21].

In this paper, we have used a special class of nongroup CA
whose state-transition diagram consists of a disjoint set of (in-
verted) trees rooted at states lying on cycles of length unity
(Fig. 1). In the rest of the paper, such inverted trees are men-
tioned simply as trees. Let such a CA be loaded with any arbi-
trary bit pattern and allowed to run autonomously for a number
of clock cycles equal to the depth of such trees. Naturally, the
CA will evolve through a number of states and finally reach
one of these cyclic states and remain there forever. It may be
easily noted from Fig. 1, that all states lying on the same tree
will reach the same cyclic state, whereas the states belonging to
different trees will reach different ones. This has motivated us

1063–8210/00$10.00 © 2000 IEEE

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 725

Fig. 1. Structure and behavior of a 4-cell CA.

to look into such tree structures aspattern classifiers—in which
the states belonging to the same tree form a class. In our work,
first a CA has been designed, which can classify a given set of
patterns into two classes and (say). Such aTwo-Class
Classifierhas been extended to solve the multiclass classifica-
tion problem in which a pattern set is to be classified into

-classes. Finally a hardware implementation of the classifier
is also presented. The highly regular, modular, and cascadable
structure of the classifier makes it ideal for VLSI implementa-
tion. The design has been specified in Verilog and simulated for
functional correctness.

Section II presents the preliminaries of CA along with some
previously established relevant characterizations. Section III an-
alyzes the behavior of a class of nongroup CA named as Mul-
tiple Attractor CA (MACA). Section IV utilizes the properties
of MACA to build the pattern classifier with two mutually dis-
joint classes. Subsequently, the scheme is extended to handle
nondisjoint larger number of classes. Section V deals with the
hardware implementation of the two-class classifier. Section VI
presents the experimental results. Section VII highlights two re-
alistic applications of such a classifier.

II. CA PRELIMINARIES

A CA consists of a number of interconnected cells arranged
spatially in a regular manner [5]. In the most general case, each
such cell can exist in different states and the next state of
any particular cell depends on the present states ofof its

neighbors. Such a general CA is called an-state -neighbor-
hood CA. In the present work we have used 2-state,-neigh-
borhood -bit CA. Each of the cells is essentially comprised
of a memory element built with a flip-flop, a combinato-
rial logic that generates the next-state from the present state of
itself and its neighbors. All earlier works [11]–[20], [22] em-
ployed CA with three neighborhood structure (left, self, and
right) [see Fig. 1(a)]. However, in this work, we have relaxed the
neighborhood restrictions for better solutions to the classifica-
tion problem. Unrestricted neighborhood does not result in any
penalty for software implementation of the CA-based scheme.

For an -cell one–dimensional linear CA withXOR rules, it
has been shown [10], [11] that the linear operator is an
Boolean matrix whoseth row specifies the dependency of the
th cell of the CA on other cells [Fig. 1(b)]. The next state

of the CA is generated by applying this linear operator on the
present CA state represented as a column vector. The operation
is the normal matrix multiplication, but the addition involved is
modulo-2 sum [that is, all operations are in GF(2)]. This matrix
is termed as theCharacteristic Matrixof the CA and is denoted
by . If is a column vector representing the state of the au-
tomata at th instant of time, then the next state of a linear CA
is given by .

It has been proven in [10] that if the matrix is nonsingular,
then the CA is agroup CA; otherwise it is anongroup CA. In
the state transition graph of a group CA all states are cyclic,
each state has a unique predecessor and a unique successor state.
Fig. 1 displays the state transition graph of a nongroup CA with

726 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

its characteristic matrix and other relevant information. In the
state transition diagram of a nongroup CA [Fig. 1(b)], a state
having at least one indegree is called areachable state, while a
state with no indegree is called anonreachable state. Reachable
states which lie on cycles are calledcyclic states. A state which
has a self loop is referred to as agraveyard stateor single cycle
attractor. In the present work, a single cycle attractor is simply
referred to as anattractor. Thus, an attractor in the rest of the
paper will be viewed as a cyclic state with unit cycle length.
The maximum number of state transitions required to reach the
nearest cyclic state from any nonreachable state is defined as
the depthof the CA [Fig. 1(b)]. The set of states lying on the
tree rooted at an attractoris referred to ask-basin. In the rest
of the paper we will be using both the terms “basin” and “tree”
interchangeably. We define MACA to be the one in which each
of the cyclic states is an attractor—that is, it lies in a cycle of
unit length and there are multiple such attractors in the state-
transition diagram. Thus the CA shown in Fig. 1 is a multiple
attractor one with four attractors.

Theorem 1: The number of attractors in a Multiple Attractor
CA is , where is the number of cells of the CA, andis
the rank of the Matrix, being the identity matrix
[21].

Theorem 2: The number of predecessors in a Multiple At-
tractor CA is , where is the number of cells of the CA,
and is the rank of the Matrix [21].

III. CHARACTERIZATION OF MULTIPLE ATTRACTOR CA
(MACA)

In this section we report some interesting properties of mul-
tiple attractor CA. Such CA is characterized by multiple single
cycle attractors and trees rooted on such attractors in their state
transition behavior. From Theorem 1 it can be noted that if the
characteristic matrix of such an-cell CA be , and

, then the number of attractor states is . Thus, by
selecting the particular CA configuration with the required
matrix, it is possible to get a CA with varying number of attrac-
tors.

Next we state an important result regarding the pseudo-ex-
haustive nature of attractors.

Pseudo-Exhaustive Patterns:A set of patterns is said to gen-
erate -bit pseudo-exhaustive patterns if there existsbit posi-
tions containing all possible patterns. For example, the pat-
tern set generates 2-bit pseudo-exhaustive patterns

as shown below

Theorem 3: In an -cell multiple attractor CA with at-
tractors, there exists bit positions at which attractors give
pseudo-exhaustive patterns [21].

Example: The 4-cell CA shown in Fig. 1 has attractors
, , , and . The attractors

generate pseudo-exhaustive patterns at bit positions 1 and 4.

A. D1-MACA

An MACA having depth equal to one, is of special interest for
our classifier design. Such an MACA is called a D1-MACA.
D1-MACA has got some special features that have been ex-
ploited fruitfully in designing the classifier:

1) Since the depth is unity, to reach each attractor from a
nonreachable state, the CA needs to be run for a single
cycle only. As a result, the run time of the classifier to
identify the class of a given pattern gets reduced.

2) It significantly reduces the computation necessary to
search for the set of MACA that are required to design
the classifier.

Theorem 4: For any -depth MACA there exists a
D1-MACA

Proof: It follows directly from the fact that if be the
characteristic matrix of a -depth MACA, then the CA with
characteristic matrix is a depth-1 MACA. The new
CA will have same set of attractors as the earlier ones, however
all nonreachable states will be at depth unity only.

A 4-cell 2-depth MACA with its characteristic matrix is
shown in Fig. 2(a). The corresponding D1-MACA is shown in
Fig. 2(b). Note that such a transformation may cause a change
in the neighborhood of the cells of the CA, here in our example,
the third cell from left in Fig. 2(b) has four neighborhood.

IV. MACA-B ASED CLASSIFICATION STRATEGY

An -bit multiple attractor CA with -attractors can be
viewed as a natural classifier. It classifies a given set of numbers
into distinct classes, each class containing the set of states
in the attractor basin. This can be envisaged as follows: when
a CA is loaded with a number which is the bit-pattern whose
class has to be determined, and is allowed to run in autonomous
mode for a number of clock cycles equal to the depth of the CA,
it evolves through a number of states and ultimately reaches an
attractor state. As per Theorem 3 above, the positions giving the
pseudo-exhaustive patterns will identify the class of the pattern
uniquely. This pseudo-exhaustive field yields the memory
address of the class, to which the pattern belongs to. This has
been explained in Fig. 3.

A. Two-Class Classification

Let the given pattern set be consisting of only two disjoint
pattern classes and . That is to say, all patterns in the set

belongs to either of or . If the classifier classifies the
pattern set then for any two patterns and should
lie on separate trees. Thus if be the characteristic matrix of
the D1-MACA performing the classification, then the following
relations should hold:

Relation R1: and

Also to ensure that it is a depth 1 CA, the following relation
must hold true:

Relation R2:

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 727

Fig. 2. (a) A 2-depth MACA and (b) corresponding 1-depth MACA.

Fig. 3. CA-based classification strategy.

Thus, any CA having a characteristic matrix satisfying rela-
tions R1 and R2 is a classifier for the pattern set. Each basin
of the CA will contain patterns from either of or , but not
both. The two classes can be distinguished by a single bit,[let

for and for].
1) Algorithm for a Two-Class Classifier:Consider that a

given set of patterns , the elements of which are to be classi-
fied into two disjoint classesviz.
and . From the above theoretical
background, if be characteristic matrix of the CA classifying
them, then we must have

and

where and

Moreover, to ensure that is a D1-MACA, we should have
. The algorithm to construct a classifier for two disjoint

classes is noted in Fig. 4. A function to identify the class of a
given pattern has been given in Fig. 5.

FunctionTwo-Class Classifieris illustrated in the following
example.

Example 2: Let us consider the 4-bit pattern set
, consisting of two classes

Class-1 andClass-2 . Let
be the characteristic matrix of a CA in which patterns of

XOR-setdoes not belong to the 0-basin. Assuming,

The corresponding equations, as per theRelation R1, are shown
in Table I. Any solution to this system of equations which sat-
isfies theRelation R2noted as , or
is a classifier for the classes and . These equations can
be solved by constructing the corresponding Binary Decision
Diagram (BDD) and finding the satisfiability set of it. However,
solving these equations directly is highly computation intensive.
We now discuss the steps of the algorithm to construct our clas-
sifier.

The XOR-set in this case is , .
The XOR set expressed in binary is ,

. To accomplish Step 3, since the
number of 1’s in each column is same, so we scan from right
to left, and select the least significant column position first,
thus theXOR elements , and are first
selected. Now observe thatXOR elements and are
yet unselected and has 1’s in their second least significant bit
position. So this column gets selected. Finally, and
has 1’s in the third least significant bit position. Hence, this
column is also selected. Observe that the most significant bit
position is never selected. Thus this bit has been ignored in
our further discussions. Hence, as per Step 3 of the algorithm,

. Now,

728 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Fig. 4. Algorithm to construct a two-class classifier.

Fig. 5. Function to identify class of a pattern in two-class classification.

Step 4 reorganizes the pattern set to the following:

Class-1:

Class-2:

The modified XOR set is given by,
. Here the least significant bit position

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 729

TABLE I
CONDITIONS AND EQUATIONS FORRELATION R1

TABLE II
MODIFIED EQUATION AND CONDITIONS FORRELATION R1

Fig. 6. Example of a two-class classifier.

hasbeen discarded, since it is always zero. To consider the
possible merging of rows of we form BDDs of the following
operation:

A solution to set of equations shown in Table II is ,
. All other ’s are equal to zero. Hence Step 6 of the

algorithm will produce the matrix (with being equal to 1)
as, . Thus Step 7 constructs the-Matrix as:

Rank of the above -Matrix is unity and that of the ma-
trix is three. Hence, as per Theorem 1, there will be
attractors and, as per Theorem 2, each will have pre-
decessors. Fig. 6 shows the classifier constructed.

Thus we can conclude, that it is possible to design a Two-
Class Classifier with a minimized memory requirement. Our
strategy of two-class classification has been tested for randomly
generated data sets, some of the results are enumerated in the
Section VI. The two-class classifier discussed in this section
can be viewed as a single stage classifier. It is a CA represented
by the specified matrix. For designing Multiclass Classifier,
this scheme of single stage classification will be repeatedly em-
ployed that leads to a multi-stage classifier consisting of mul-
tiple CA, each CA corresponding to a single stage.

B. Multiclass Classification

In this section, we present the strategy for classifying patterns
into more than two classes. Let the class of-bit patterns be
consisting of classes , . In this -class classi-
fier the restriction regarding the disjoint nature of the data set
has been relaxed, that is there can be common elements in the
pattern sets . Algorithm for multiclass classifi-
cation is noted in Fig. 7. Fig. 8 notes the function to identify the
class of a given pattern.

Example 3: Let , , , be four pattern classes which
are not mutually disjoint. Consider that ,

, and , ,
, . Observe that the pattern 5 be-

longs to , , . Our classifier sets an output register of 4 bits
to as the pattern 5 belongs to the above three classes.
Similarly for pattern 8, which belongs to and , the config-
uration of the output register will be .

In our strategy, we consider two temporary classes,Tem-
pClass and TempClass such thatTempClass and
TempClass . In our example, we have
TempClass and TempClass

. That is to say
TempClass . At this point observe that
TempClassandTempClassare mutually disjoint and hence a
Two-Class Classifier, as proposed in the previous section can be
used to identify the class to which a patternactually belongs
to. If the pattern under test belongs to class, then the corre-
sponding bit of the output register, here the bit 1, is set by the
CA, otherwise it sets the bit 1 to 0. In the second pass consider
thatTempClass andTempClass .
In this way, after four passes, all the bits of the output register
can be set/reset.

V. HARDWARE REALIZATION

In this section, we discuss the hardware realization of the
CA-based classification scheme. We first present a structure for
two-class classification. The scheme being highly regular, mod-
ular, and cascadable, a number of such basic building blocks can
be cascaded to design a Multiclass Classifier capable of han-
dling any number of classes consisting of patterns of large bit
size.

A. Hardware for Two-Class Classification

The basic building block for two-class classifier consists of
a 16-bitPattern Register (PATT-REG), and an array of

730 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Fig. 7. Algorithm to construct a two-class classifier.

Fig. 8. Function to identify class of a pattern in two-class classification.

cells. It can handle patterns of size up to 16 bits, and can im-
plement a CA-based classifier that has atmost 256 attractors. Of
course, for larger sized patterns and/or higher number of attrac-
tors, two or more such blocks can be cascaded. The structure of

the basic building block has been shown in Fig. 9. The details
of each the components are outlined next.

1) Pattern Register(PATT-REG):The 16-bit pattern register
to hold the pattern, whose class has to be identified.

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 731

Fig. 9. Basic architecture of aCA-based two-class classifier.

Fig. 10. Horizontal cascading of two-class classifiers.

2) Array of Cells: This is a regular array of cells.
Each row of the array realizes one of the nonzero rows of
the -matrix. It may be recalled that each nonzero row of
the -matrix of the CA implies theXOR of some of the
bits of the pattern to be classified. Each cell consists of
a multiplexer and anXOR gate. The control line of the
multiplexer is programmed to select the bit, if is
present in the corresponding row of-matrix, otherwise
it passes a “0.” One of the inputs to theXOR-gate comes
from the multiplexer, the other input comes from theleft
neighboring cell. Similarly, output of theXOR-gate goes
to theright neighbor.

3) Left Boundary Lines:These lines act as the left neighbors
of the leftmost cells. Normally, these should be set to zero.
The lines help in horizontal cascading discussed later.

4) Pseudo-exhaustive Lines:These lines are the outputs of
the rightmost cells. These lines will contain the pseudo-
exhaustive bit pattern for the attractor, the basin of which
contains the pattern to be classified. Hence, these lines
can be used to search in the external lookup table. These
lines can also be used for cascading.

B. Horizontal Cascading

To classify patterns of width more than 16 bits, two or more
such building blocks can be cascaded horizontally. A typical
horizontal cascading scheme has been shown in Fig. 10. The
pattern to be classified is broken down into 16-bit subpatterns.
Each of these subpatterns are fed to one of the cascaded building
blocks. ThePseudo-exhaustive Linesof a block are connected
to theLeft Boundary Linesof the next block in the sequence.

732 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Fig. 11. Vertical cascading of two-class classifiers.

C. Vertical Cascading

Vertical cascading is required when the number of nonzero
rows of the -Matrix is more than eight. In this case, each of the
building blocks realizes a subset of nonzero rows of-Matrix.
The pattern to be classified is fed to thePATT-REG. A typical
vertical cascading scheme has been shown in Fig. 11.

D. A Combined Cascading Scheme

A combined cascading scheme containing both horizontal
and vertical cascading has been shown in Fig. 12. This scheme
can handle patterns of larger than 16 bits. As has been stated
above the pattern is broken down into subpatterns of 16 bits and
are applied parallely to the classifiers. Owing to vertical cas-
cading, the classifier presented in Fig. 12 can handle those situ-
ations in which the number of nonzero rows of the-Matrix is
more than eight.

VI. EXPERIMENTAL RESULTS

The classification technique has been implemented in C on
a Dec Alpha workstation with 175 MHz clock frequency and
32 MB main storage. In order to judge the performance of the
CA-based classifier, we have compared the memory require-
ment of the scheme with theStraight ForwardApproach (re-
ferred to asSFA in the remaining section) that stores the class
of each pattern directly.

Let and be the number of patterns in the two classes
and respectively, to be classified. Each pattern is assumed

TABLE III
RESULTS OFCLASSIFICATION WITH CA-BASED TWO–CLASS CLASSIFIER ON

RANDOMLY GENERATED PATTERNS

to be of bits. In the straight-forward approach it suffices to
note the class of all patterns of either or . This requires
() bits. An extra bit is required to determine
whether the patterns stored are of or . Hence, the total
memory requirement is

On the other hand, let a classifier based on CA possessat-
tractors containing patterns of and attractors containing
patterns of . If the number of pseudo-exhaustive bits of the
attractors be , then the total memory requirement is

Table III notes some of the results for two-class classification
on randomly generated data sets. The CA-based approach on
an average requires 19.83% lesser memory than the straight-
forward technique. For some cases, the saving in memory space
is seen to be as high as 65.04%. However, in some situations,
CA-based approach does not save any memory. This situation
occurs when the patterns are such that the characteristic matrix
for the classifier CA becomes equal to the identity matrix (all
states are single cycle attractors). That is, the pattern bits cannot
be combined effectively usingXOR-logic to reduce the required

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 733

Fig. 12. Combined cascading of two-class classifiers.

TABLE IV
RESULTS OFCLASSIFICATION WITH CA-BASED MULTICLASS CLASSIFIER ON

RANDOMLY GENERATED PATTERNS

number of bits. In this situation, probably a different encoding
of pattern features will yield better results.

For multiclass classification, with classes ,
having patterns, respectively, the memory re-
quirement of the straight-forward approach is

lg

That is to say, it stores all the patterns and their classes. On the
other hand the CA-based approach will require memory for the
individual Two-Class Classifiers. Since the number of attractors
stored for the individual classifiers is not fixed, this information
is also to be kept. Hence an additional bits will be re-
quired each of the classifiers. Thus the total memory require-
ment will be

Table IV notes down the result for multiclass classification.
On an average, the CA-based approach requires 34.51% lesser
memory than the straight-forward strategy. In some situations,
it can show upto 57.54% saving of memory.

VII. SOME PRACTICAL APPLICATIONS OFCA-BASED

CLASSIFIER

In this section we present two applications of the CA-based
pattern classifier for VLSI circuit testing.

1) Analog Circuit Fault Detection:Fault verification and
testing of analog circuits can be an important practical ap-
plication of the CA-based classifier, presented in [23]. As
an example, we consider a low-pass filter having transfer
function

where the parameters, , , , , depends on ,
components of the circuit and the gain . By varying
these components of the circuit, the stability of the cir-
cuit may be controlled. Consider that , , ,

734 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Fig. 13. Nyquist plot of a typical LPF.

, , and as the minimum values of these pa-
rameters above which the circuit remains stable. Also let,

, , , , , and be the max-
imum values of these parameters below which the cir-
cuit remains stable. From the Nyquist plot, as presented
in Fig. 13, it may be noted that the circuit is said to be
stable if the Nyquist plot for a given set of values of, ,
, , , lies entirely in the region of the plot where the

circuit remains stable. We can thus think of three classes,
• : Minimally Faulty Class, comprising of points in

region-1.
• : Non Faulty Class, comprising of points in re-

gion-2.
• : Maximally Faulty Class, comprising of points

in region-3.
Thus, an analog circuit may be said to be fault free, if
all the points in its Nyquist plot can be mapped to the
stable region, that is to class . It may be noted that as
the boundary of the Nyquist plot is highly irregular, so
the conventional hardware comparator circuits cannot be
employed to solve this classification problem. Hence the
CA-based classification approach presented in the current
work can prove to be a better alternative.

2 VLSI Circuit Fault Detection:To reduce the complexity
of testing, VLSI circuits are often partitioned into a set
of disjoint/overlapping partitions. Response of the cir-

cuit corresponding to the faults in the different partitions
are grouped separately, each group forming a class. The
process helps in locating a probable faulty section of the
circuit. Hence the classification scheme based on CA can
be employed, which will point to faulty partition(s), given
the faulty response of the circuit [24].

VIII. C ONCLUSION

This paper enumerates an efficient classification scheme
based on CA. It saves, on an average, 34.51% memory as
compared to the direct storing of pattern classes. The design
has been specified in Verilog and simulated for functional
correctness. The regular, modular, and cascadable structure of
the classifier makes the scheme ideal for VLSI implementation.

REFERENCES

[1] R. Duda and P. Hart,Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[2] J. V. Neuman,The Theory of Self-Reproducing Automata, A. W. Burks,
Ed. Urbana, IL: Univ. Illinois Press, 1966.

[3] A. W. Burks, “Essays on cellular automata,” Univ. Illinois, Urbana, IL,
Tech. Rep., 1970.

[4] E. F. Codd,Cellular Automata. New York: Academic, 1968.
[5] S. Wolfram, “Statistical mechanics of cellular automata,”Rev. Mod.

Phys., vol. 55, pp. 601–644, July 1983.
[6] , “Random sequence generation by cellular automata,”Adv. Appl.

Math., pp. 123–169, 1986.
[7] , “Computation theory of cellular automata,”Commun. Math.

Phys., vol. 96, pp. 15–57, 1984.
[8] O. Martin, A. M. Odlyzko, and S. Wolfram, “Algebraic properties of

cellular automata,”Comm. Math. Phys., vol. 93, pp. 219–258, 1984.
[9] A. K. Das, “Additive cellular automata: Theory and application as a

built-in self-test structure,” Ph.D. dissertation, I.I.T. Kharagpur, India,
1990.

[10] A. K. Das and P. P. Chaudhuri, “Efficient characterization of cellular
automata,”Proc. Inst. Elec. Eng., vol. 137, pt. E, pp. 81–87, Jan. 1990.

[11] , “Vector space theoretic analysis of additive cellular automata and
its applications for pseudo-exhaustive test pattern generation,”IEEE
Trans. Comput., vol. 42, pp. 340–352, Mar. 1993.

[12] P. D. Hortensiuset al., “Cellular automata based pseudo-random number
generators for built-in self-test,”IEEE Trans. Computer-Aided Design,
vol. 8, pp. 842–859, Aug. 1989.

[13] P. D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel pseudo-
random number generation for VLSI systems using cellular automata,”
IEEE Trans. Comput., vol. 38, pp. 1466–1473, Oct. 1989.

[14] , “Cellular automata based signature analysis for built-in self-test,”
IEEE Trans. Comput., vol. 39, pp. 1273–1283, Oct. 1990.

[15] S. Nandi and P. P. Chaudhuri, “Additive cellular automata as on-chip test
pattern generator,” inProc. 2nd Asian Test Symp., Nov. 1993.

[16] A. K. Das, D. Saha, A. R. Chowdhury, S. Misra, and P. P. Chaudhuri,
“Signature analyzer based on additive cellular automata,” inProc. 20th
Fault Tolerant Computing Systems, U.K., June 1990, pp. 265–272.

[17] M. Serra, T. Slater, J. C. Muzio, and D. M. Miller, “Analysis of one
dimensional cellular automata and their aliasing probabilities,”IEEE
Trans. Computer-Aided Design, vol. 9, pp. 767–778, July 1990.

[18] D. R. Chowdhury, S. Basu, I. S. Gupta, and P. P. Chaudhuri, “Design of
CAECC—Cellular automata based error correcting code,”IEEE Trans.
Comput., vol. 43, pp. 759–764, June 1994.

[19] S. Nandi, B. K. Kar, and P. P. Chaudhuri, “Theory and application of
cellular automata in cryptography,”IEEE Trans. Comput., vol. 43, Dec.
1994.

[20] D. Chowdhury, S. Chakraborty, B. Vamsi, and P. Chaudhuri, “Cellular
automata based synthesis of easily and fully testable FSMs,” inProc.
ICCAD, Nov. 1993, pp. 650–653.

[21] P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chattopadhyay,Ad-
ditive Cellular Automata Theory and Applications: Vol. 1. New York:
IEEE Computer Society, 1997.

[22] D. R. Chowdhury, S. Basu, I. S. Gupta, and P. P. Chaudhuri, “Encoding
and decoding of error correcting codes using cellular automata,” inProc.
VLSI Design, Jan. 1992, pp. 133–136.

CHATTOPADHYAY et al.: HIGHLY REGULAR, MODULAR, AND CASCADABLE DESIGN 735

[23] K. Paul, A. Roy, P. Nandi, B. Roy, M. Purkayastha, S. Chattopadhyay,
and P. P. Chaudhuri, “Theroy and application of multiple attractor cel-
lular automata for fault diagnosis,” inAsian Test Symp., 1998.

[24] S. Nandi, S. Chattopadhyay, and P. P. Chaudhuri, “Theroy and applica-
tion of cellular automata for fault diagnosis in VLSI circuits,” inProc.
VLSI, Jan. 1996.

Santanu Chattopadhyayreceived the B.E. degree in
computer science and technology from Calcutta Uni-
versity, Calcutta, India, in 1990 and the M.Tech. and
Ph.D. degrees in computer science and engineering
from Indian Institute of Technology, Kharagpur, in
1992 and 1996, respectively.

From July 1995 to February 1999, he was
associated with Bengal Engineering College
(Deemed University), Howrah, as a Lecturer in the
Department of Computer Science and Technology.
From February 1999 to May 2000, he was Computer

Networking Manager at the Indian Institute of Technology, Kharagpur. In May
2000, he joined the Indian Institute of Technology, Guwahati, as an Assistant
Professor in the Department of Computer Science and Engineering. He also
coauthored the bookAdditive Cellular Automata—Theory and Applications,
Volume I(New York: IEEE Computer Society). His research interests include
theory and applications of cellular automata, logic design, high level synthesis,
and circuit testing.

Shelly Adhikari received the B.E. degree in
computer science and technology from Bengal
Engineering College (Deemed University), Howrah,
in 1998.

He is currently a Design Engineer working on
EDA Projects at Delsoft India Pvt. Ltd., Uttar
Pradesh, India. For a short time, he was with
Kawasaki Research and Engineering Center, Fujitsu
Ltd., Japan, where he was involved in the design
of a 0.18-�m/500-MHz 64-bit RISC processor. His
research interests include cellular automata and

VLSI design.

Sabyasachi Senguptareceived the B.E. degree in
computer science and technology from Bengal En-
gineering College (Deemed University), Howrah, in
1998.

He is currently a System Engineer working on
Sequennt’s Dynix/ptx operating system at Wipro
Technologies, Bangalore, India. His research
interests include cellular automata and design of
operating system.

Mahua Pal received the B.E. degree in computer sci-
ence and technology from Bengal Engineering Col-
lege (Deemed University), Howrah, in 1998.

She is currently a System Engineer working
on knowledge in networking domain at Wipro
Infotech, Calcutta, India. Her research interests
include cellular automata, VLSI design, artificial
intelligence, and neural network.

