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Highly Reqgular, Modular, and Cascadable Design of
Cellular Automata-Based Pattern Classifier

Santanu Chattopadhyay, Shelly Adhikari, Sabyasachi Sengupta, and Mahua Pal

~ Abstract—This paper enumerates a new approach to the solu- by a highly regular, modular, and cascadable hardware struc-
tion of classification problems based on the properties of Additive ture—the three essential qualities the VLSI designers look for.

Cellular Automata. Classification problem plays a major role in . . .
various fields of computer science, such as grouping of the records  CA consist of a number of cells interconnected in a regular

in database systems, detection of faults in VLSI circuits, image pro- mannerMon Neumanii2] proposed a model of universal ma-
cessing, and so on. The state-transition graph of Non-group Cel- chines (a cellular space) involving 5-neighborhood cells each
lular Automata (CA) consists of a set of disjoint trees rooted at having 29 states. The theory of CA received consolidation by

some cyclic states of unit cycle length-thus forming a natural classi- . . e
fier. First a scheme of classifying the patterns distributed into only Burks[3] and considerable simplifications were subsequently

two classes has been dealt with. This has been further extendedintroduced by Codd [4]. Wolfram [5]{7] pioneered the investi-
for solution of the multiclass classification problem. The Multiclass ~ gation of CA as mathematical models for self-organizing statis-
Classifier saves on an average 34% of memory as compared to thetical systems and suggested the use of a simple 2-state, 3-neigh-
straight-forward approach storing directly the class of each pat-  porhood CA with cells arranged linearly in one dimension. Each
tern. A regular, modular, and cascadable hardware implementa- cell essentially comprises of a memory element and a com-

tion of the classifier has been presented which is highly suitable for =~ :
VLS| realization. The design has been specified in Verilog and ver- Pinational logic that generates the next-state of the cell from

ified for functional correctness. the present-state of its neighboring cellef; right, andself
Index Terms—Cellular automata, hardware classifier, pattern Marti'n [8] used pO.Iyn'OmiaI algebraic'tools to dgrivg some char-
classifier, very large scale integration (VLSI) circuits. acterization ofperiodic boundary unifornCA with identical

CA rule applied to each of the cells. A new era of research on
theory and applications of CA has been initiated with the work
of Das [9]-[11], that dealt with analytical characterization of
HE ABILITY of machines to perceive their environmentCA behavior based on matrix algebraic tools. This technique
is limited. The apparent ease with which the vertebratéscapable of characterizimgeriodic/null boundaryhybrid CA
and insects perform their perceptual tasks is at once encowith different rules applied to different cells. A CA with non-
aging and frustrating. Psychological and physiological studiegigular characteristic matrix is termed@soup CA else it is
have provided many interesting facts, but nothing is sufficientilledNongroup CAThe state-transition behavior of group CA
to duplicate their ability by computers. A modest problens characterized by the fact that every state has got a unique
emerging in this field is pattern classification—the assigmpredecessor. Whereas in a nongroup CA, the number of pre-
ment of physical object or event to one or more prespecifietcessors is either zero, @, for some:i > 0. Group CA has
categories [1]. However, the problem of classification can lmeeen studied extensively in [8], [10]-[14]. Many realistic ap-
identified in almost any field—be it the grouping of the genetiplications have also been reportegseudo-randonfil 2], [13]
codes, chemical compounds, database records, or VLSI fardpseudo-exhaustive pattern generatj@d], [15], signature
diagnosis. Neural networks is one of the modern methodolaralysis[14], [16], [17], error-correcting code$18], andcryp-
gies for solving the classification problem. But the design abgraphy[19]. However, the study of nongroup CA behavior
neural network-based circuits become far more intriguing amds not been given due attention in the past. A particular class
complex when the membership criteria becomes complicated nongroup CA referred to a@1* CA is studied in details and
In this work, an elegant solution based on Cellular Automatesed for synthesis of testable FSM [20]. Non-group CA has also
(CA) has been reported for solving the generic classificatidoeen utilized to design efficient hashing functions [21].

problem. It has been found from the experimental results thatiy this paper, we have used a special class of nongroup CA
the memory requirement in CA-based approach is much Iggfose state-transition diagram consists of a disjoint set of (in-
as compared to the case where the class of individual pattefgfted) trees rooted at states lying on cycles of length unity
are stored directly. The scheme can be efficiently implementgely 1), In the rest of the paper, such inverted trees are men-
tioned simply as trees. Let such a CA be loaded with any arbi-
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Fig. 1. Structure and behavior of a 4-cell CA.

to look into such tree structurespattern classifiers-in which  neighbors. Such a general CA is calledrarstatek-neighbor-

the states belonging to the same tree form a class. In our wdnkpd CA. In the present work we have used 2-statagigh-

first a CA has been designed, which can classify a given settfrhoodn-bit CA. Each of the cells is essentially comprised
patternsP into two classed’ and P (say). Such &wo-Class of a memory element built with & flip-flop, a combinato-
Classifierhas been extended to solve the multiclass classifiagal logic that generates the next-state from the present state of
tion problem in which a pattern s& is to be classified into itself and its neighbors. All earlier works [11]-[20], [22] em-
k-classes. Finally a hardware implementation of the classifiployed CA with three neighborhood structufef(, self, and

is also presented. The highly regular, modular, and cascadatijt) [see Fig. 1(a)]. However, in this work, we have relaxed the
structure of the classifier makes it ideal for VLSI implementaaeighborhood restrictions for better solutions to the classifica-
tion. The design has been specified in Verilog and simulated fiion problem. Unrestricted neighborhood does not result in any
functional correctness. penalty for software implementation of the CA-based scheme.

Section Il presents the preliminaries of CA along with some For ann-cell one—dimensional linear CA withor rules, it
previously established relevant characterizations. Section Ill dras been shown [10], [11] that the linear operator isian n
alyzes the behavior of a class of nongroup CA named as M@eolean matrix whoséth row specifies the dependency of the
tiple Attractor CA (MACA). Section IV utilizes the propertiesith cell of the CA on other cells [Fig. 1(b)]. The next state
of MACA to build the pattern classifier with two mutually dis-of the CA is generated by applying this linear operator on the
joint classes. Subsequently, the scheme is extended to hamaésent CA state represented as a column vector. The operation
nondisjoint larger number of classes. Section V deals with tiethe normal matrix multiplication, but the addition involved is
hardware implementation of the two-class classifier. Section ¥flodulo-2 sum [that is, all operations are in GF(2)]. This matrix
presents the experimental results. Section VII highlights two ris-termed as th€haracteristic Matrixof the CA and is denoted
alistic applications of such a classifier. by T. If f; is a column vector representing the state of the au-
tomata atth instant of time, then the next state of a linear CA
isgiven byfii1 =T x f;.

It has been proven in [10] that if tHE matrix is nonsingular,

A CA consists of a number of interconnected cells arrang#iten the CA is aroup CA otherwise it is anongroup CAln
spatially in a regular manner [5]. In the most general case, eabl state transition graph of a group CA all states are cyclic,
such cell can exist imn different states and the next state oach state has a unique predecessor and a unigue successor state.
any particular cell depends on the present states of its Fig. 1 displays the state transition graph of a nongroup CA with

Il. CA PRELIMINARIES
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its characteristic matrix and other relevant information. In th& D1-MACA

state transition diagram of a nongroup CA [Fig. 1(b)], a state on mMACA having depth equal to one, is of special interest for
having at least one indegree is callettachable statewhile a o, ¢jassifier design. Such an MACA is called a D1-MACA.
state with no indegree is callechanreachable statdReachable 1 \MACA has got some special features that have been ex-
states which lie on cycles are calleylic statesA state which ploited fruitfully in designing the classifier:

has a self loop is referred to ageaveyard stat®r single cycle 1) Since the depth is unity, to reach each attractor from a
attractor. In the present work, a single cycle attractor is simply nonreachable state. the 'CA needs to be run for a single
referred to as aattractor. Thus, an attractor in the rest of the cycle only. As a resiult, the run time of the classifier to

paper will be viewed as a cyclic state with unit cycle length. identify the class of a given pattern gets reduced

The maximum number of state transitions required to reach the2) It significantly reduces the computation neceésary o
nearest cyclic state from any nonreachable state is defined as search for the set of MACA that are required to design
the depthof the CA [Fig. 1(b)]. The set of states lying on the the classifier

tree rooted at an attractéris referred to ak-basin In the rest ' _

of the paper we will be using both the terms “basin” and “tree” 1heorem 4:For any d-depth MACA there exists a
interchangeably. We define MACA to be the one in which eadfil-MACA . )

of the cyclic states is an attractor—that is, it lies in a cycle of ~Proof: It follows directly from the fact that ifl” be the
unit length and there are multiple such attractors in the Staf@_aracter!st!c matr_|x of ai'dfl?th MACA, then the CA with
transition diagram. Thus the CA shown in Fig. 1 is a multiplgharacteristic matri¢y = 7 is a depth-1 MACA. The new
attractor one with four attractors. CA will have same set of attractors as the earlier ones, however

Theorem 1: The number of attractors in a Multiple Attractor@!l nonreachable states will be at depth unity only. o
CAis 27—, wheren is the number of cells of the CA, ands A 4-cell 2-depth MACA with its characteristic matrix is

the rank of thel’ @ I Matrix, I being then x n identity matrix shown in Fig. 2(a). The corresponding D1-MACA is shown in

[21]. Fig. 2(b). Note that such a transformation may cause a change
Theorem 2: The number of predecessors in a Multiple Atin the neighborhood of the cells of the CA, here in our example,

tractor CA is2"—", wheren is the number of cells of the CA, the third cell from left in Fig. 2(b) has four neighborhood.

andr is the rank of thél” Matrix [21].
IV. MACA-B ASED CLASSIFICATION STRATEGY

Il. CHARACTERIZATION OF MULTIPLE ATTRACTOR CA An n-bit multiple attractor CA withm-attractors can be
(MACA) viewed as a natural classifier. It classifies a given set of numbers

into /m distinct classes, each class containing the set of states

In this section we report some interesting properties of myh the attractor basin. This can be envisaged as follows: when
tiple attractor CA. Such CA is characterized by multiple singlg CA is loaded with a number which is the bit-pattern whose
cycle attractors and trees rooted on such attractors in their si@igss has to be determined, and is allowed to run in autonomous
transition behavior. From Theorem 1 it can be noted that if thlﬁode for a number of clock cycles equal to the depth of the CA,
characteristic matrix of such ancell CA beT’, andrank(T @ it evolves through a number of states and ultimately reaches an
I) = r, then the number of attractor state2is™". Thus, by attractor state. As per Theorem 3 above, the positions giving the
selecting the particular CA configuration with the requitEd pseudo-exhaustive patterns will identify the class of the pattern
matrix, it is possible to get a CA with varying number of attracgniquely. This pseudo-exhaustive field yields the memory
tors. address of the class, to which the pattern belongs to. This has

Next we state an important result regarding the pseudo-en explained in Fig. 3.
haustive nature of attractors.

Pseudo-Exhaustive Patterng: set of patterns is said to gen-aA. Two-Class Classification
eratek-bit pseudo-exhaustive patterns if there existst posi-
tions containing all possiblg* patterns. For example, the pat-
tern set{0, 1, 4, 7} generates 2-bit pseudo-exhaustive patter
{00, 01, 10, 11} as shown below

Let the given pattern st be consisting of only two disjoint
attern classes$’ and ;. That is to say, all patterns in the set
belongs to either of% or . If the classifier classifies the

pattern set then for any two patterns Py andy € P> should
lie on separate trees. Thusiifbe the characteristic matrix of

000 the D1-MACA performing the classification, then the following
001 relations should hold:
100 .
111 Relation R1¥z € P, andVy € P
=T (x)#T(y)
Theorem 3:In ann-cell multiple attractor CA withe™ at- =T -(zdy) #£0

tractors, there exists: bit positions at which attractors give
pseudo-exhaustivg™ patterns [21].

Example: The 4-cell CA shown in Fig. 1 has attractor
0(0000), 1(0001), 8(1000), and 9(1001). The attractors Relation R272 =T
generate pseudo-exhaustive patterns at bit positions 1 dnd 4. =T -(T®l)=0

Also to ensure that it is a depth 1 CA, the following relation
Jnust hold true:
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Fig. 2. (a) A 2-depth MACA and (b) corresponding 1-depth MACA.

O{% QO ( 25 ) Q Example 2:Let us consider the 4-bit pattern set
P 6 g {0,1,2,5, 6,7 10,11,15} consisting of two classes
- : Class-1= {0, 1, 6, 7, 15} andClass-2= {2, 5, 10, 11}. Let

T be the characteristic matrix of a CA in which patterns of

XORsetdoes not belong to the Basin Assuming,

t1y fi12 tiz fi4
T — to1 too taz t2g

1 ta1 tzz t33 34
L 10 tyy taz laz tas
ol The corresponding equations, as perfRabation R1are shown
00 in Table I. Any solution to this system of equations which sat-
MEMORY isfies theRelation R2noted asl™ = T, orT - (T & I) = 0
is a classifier for the classd’d and . These equations can
Fig. 3. CA-based classification strategy. be solved by constructing the corresponding Binary Decision

Diagram (BDD) and finding the satisfiability set of it. However,

Thus, any CA having a characteristic matrix satisfying relaolving these equations directly is highly computation intensive.
tions R1 and R2 is a classifier for the pattern BeEach basin We now discuss the steps of the algorithm to construct our clas-
of the CA will contain patterns from either @, or %, but not sifier.
both. The two classes can be distinguished by a singlé [bét The XoR-set in this case is{2, 3, 4, 5, 10, 11, 12, 13}.
b =1for P, andb = 0 for Ps]. The xOR set expressed in binary {$010, 0011, 0100, 0101,

1) Algorithm for a Two-Class ClassifierConsider that a 1010, 1011, 1100, 1101}. To accomplish Step 3, since the
given set of pattern®’, the elements of which are to be classinumber of 1's in each column is same, so we scan from right

fied into two disjoint classesiz. P, = {P;, P2, ---, Pin} to left, and select the least significant column position first,
and P = {P1, P, ---, Pay,}. From the above theoreticalthus thexor elements0011, 0101, 1011, and 1101 are first
background, ifl” be characteristic matrix of the CA classifyingselected. Now observe thabr elements0010 and 1010 are
them, then we must have yet unselected and has 1's in their second least significant bit
VPy, andv Py, posmc')n._ So this golumn gets ;glected: Fmat!bl;_,oo and1100 .
(P ® Pyj) #0 has 1's in the third least significant bit position. Hence, this
wherei =1,---.nandj=1,---,m. column is also selected. Observe that the most significant bit

position is never selected. Thus this bit has been ignored in
Moreover, to ensure thdft is a D1-MACA, we should have our further discussions. Hence, as per Step 3 of the algorithm,
T? = T. The algorithm to construct a classifier for two disjoin = 3. Now,
classes is noted in Fig. 4. A function to identify the class of a

given pattern has been given in Fig. 5. 1 00
FunctionTwo-Class Classifieris illustrated in the following 7,=10 1 0
example. 0 0 1
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Function : TwoClassClassifier

Input
P, : set of patterns belonging to class-1
Py : set of patterns belonging to class-2
Output
The T-Matrix of the CA classifying class-1 and class-2
L : The look-up table containing the pseudo-exhaustive bits
of the attractors, the trees of which hold patterns of P.
Assumption
P, and P, are disjoint
begin
1. Compute the XOR set X =P; § P,, by XORing each pattern of

Py with each pattern of P;. Let X = { z1,22,...,%% }
2. Convert each element z; of XOR set X to binary.
Let z; = by _1y;br 9y .- boi where each pattern is r-bit.
3. Identify the minimum set of columns such that each z; has got 1
in at least one of these columns. Let the columns be { [i,lz,...,1, }.
4. Reorganise the pattern sets P, and P» so that the columns
Iy through [, are the most significant ones. Let the modified
XO0R set be X'.
5. Create the matrix T, as p X p identity matrix.
6. Try to merge some of the rows of T, by Binary Decision Diagram
(BDD) based optimisation technique, such that for the modified
matrix also (say Ty, p’' xp), Ty . X' #0.
7. Construct the T Matrix as

[ 0
Tp/ Ip! Xpl

8. Let Ay and A; denote the set of attractors trees of
which contains patterns of P, and P, respectively, with
cardinalities a; and ay. If a1 < ao
then A = Ay else A = Ay;
9. Store the pseudo-exhaustive bits of each element of A in L.
end.

Fig. 4. Algorithm to construct a two-class classifier.
Function : IdentifyClassOfPattern

Input
CA of the TwoClassClassifier.
p : the pattern whose class is to be determined.
L : the look-up table containing the pseudo-exhaustive bits of
the attractors, the trees of which hold the patterns of P;.
Output

The class in which the pattern p belongs.
begin
Load the C'A with pattern p;
Run the CA with the pattern p for 1 clock cycle;
¢ = pseudo-exhaustive bits of the attractor in which the pattern p lies;
Search L for z.
if found
then pattern p lies in P
else pattern p lies in P;.
end.

Fig. 5. Function to identify class of a pattern in two-class classification.

Step 4 reorganizes the pattern set to the following: Class-2:
{0010 — 0100, 0101 — 1010, 1010 — 0100,
Class-1: 1011 — 0110} = {4, 10, 6}.
{0000 — 0000, 0001 — 0010, 0110 — 1100, The modified XorR set X’ is given by, X’ = {010,

0111 — 1110, 1111 — 1110} = {0, 2, 12, 14}. 011, 100, 101}. Here the least significant bit position
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TABLE |
CONDITIONS AND EQUATIONS FORRELATION R1

T-2#0 |tiz+tos+tzz+tiz=1

T-3#0 | (b3 Dtig) + (foz Bitoa) + (E33 D tsa) + (fas B taa) =1

T-4#0 |tip+tn+izp+tp=1

T-5#0 | (lio®tia) + (boo ®toa) + (T30 B taa) + (fao B tag) =1

T-10 75 0 (tll D 1713) + (t21 55} t23) + (t31 (&) t33) -+ (t41 ] t43) =1

T 11 #0 | (111 @113 Dtig) + (t21 Doz Do) + (E31 D tag B bsa) + (L) D tag P taa) =1
T-12#0 | (t11 Dt12) + (f21 D o) + (ts1 B tan) + (ta1 B tg) =1

T-13#0 | (t11 Dtio D t1a) + (to1 P too B tog) + (t31 D tap D tsa) + (b1 P lag Dtag) =1

TABLE I B. Multiclass Classification
MODIFIED EQUATION AND CONDITIONS FORRELATION R1 i . .
In this section, we present the strategy for classifying patterns

T-2#0 | tio+to +ta =1 into more than two classes. Let the classidiit patterns? be
T-340 | (t12®t13) + (T2 Diog) + (ta2 Dtaz) =1 consisting ofk classes;, P, -- -, P. In this k-class classi-
T-4#0 | t11 4+t +i31 =1 fier the restriction regarding the disjoint nature of the data set
T-5#0 | (t11 ®ti3) + (b Dtaz) + (b1 Dlag) =1 has been relaxed, that is there can be common elements in the
pattern setd”,, P, ---, Py. Algorithm for multiclass classifi-

cation is noted in Fig. 7. Fig. 8 notes the function to identify the
class of a given pattern.

Example 3: Let P, P», P3, P, be four pattern classes which
are not mutually disjoint. Consider th& = {0, 1, 2, 3, 4,
5,6,7,8 9%, andP, = {1, 2, 3,4}, P, ={2,5, 7,8}, Py =
{6,9, 5, 1}, P, = {0, 5, 6, 8}. Observe that the pattern 5 be-
longs toP, P, Py. Our classifier sets an output register of 4 bits
to 0,1,1,1 as the pattern 5 belongs to the above three classes.
Similarly for pattern 8, which belongs 18, and P, the config-
hasbeen discarded, since it is always zero. To consider {i&tion of the output register will b& 1,0, 1.

possible merging of rows df,, we form BDDs of the following  |n our strategy, we consider two temporary classksn-

Fig. 6. Example of a two-class classifier.

operation: pClass and TempClass such thatTempClass = P, and
. . . TempClass = P> U P3 UPy — P;. In our example, we have
tll t12 t13 X 40 TempClass = {1, 2, 3, 4} andTempClass = {2, 5, 7, 8}
t21 t22 t23 u{6,9,5, 1} U{0,5,6,8 — {1,2,3,4}. That is to say
3L %2 '3 TempClass = {0, 5, 6, 7, 8, 9}. At this point observe that

A solution to set of equations shown in Table litig = 1, TempClassandTempClasgare mutually disjoint and hence a
ts» = 1. All other ¢;;'s are equal to zero. Hence Step 6 of thdWO-Class Classifigas proposed in the previous section can be
algorithm will produce the matris,, (with p’ being equal to 1) used to identify the class to which a pattgractually belongs

as, T,y = [110]. Thus Step 7 constructs theMatrix as: to. If the pattern under test be!ongs to clags th_en tr_]e corre-
sponding bit of the output register, here the bit 1, is set by the

0000 CA, otherwise it sets the bit 1 to 0. In the second pass consider
T = 0000 thatTempClass = P, andTempClass= P, U P3 U Py — P5.
0000 In this way, after four passes, all the bits of the output register
1101 can be set/reset. O
Rank of the abov&’-Matrix is unity and that of th&” ¢ I ma-
trix is three. Hence, as per Theorem 1, there wilPbe® = 2 V. HARDWARE REALIZATION

attractors and, as per Theorem 2, each will r2ivret = 8 pre- h ) , he h lizati f th
decessors. Fig. 6 shows the classifier constructed. In this section, we discuss the hardware realization of the

Thus we can conclude, that it is possible to design a TWg_A-based Class_i_fica_tion scheme. We firs_t pre_sent a structure for
Class Classifier with a minimized memory requirement. odpo-class classification. The scheme being _hlghl_y r_egular, mod-
strategy of two-class classification has been tested for randorHlg" @nd cascadable., a number of such bas!g building blocks can
generated data sets, some of the results are enumerated ifPfhgascaded to design a Multiclass Classifier capable of han-
Section VI. The two-class classifier discussed in this sectigh"d any number of classes consisting of patterns of large bit

can be viewed as a single stage classifier. Itis a CA represen?&f'
by the specifiedl” matrix. For designing Multiclass Classifier,
this scheme of single stage classification will be repeatedly e
ployed that leads to a multi-stage classifier consisting of mul- The basic building block for two-class classifier consists of
tiple CA, each CA corresponding to a single stage. a 16-bitPattern Register (PATT-REGENd ar® x 16 array of

A Hardware for Two-Class Classification
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Function : MultiClassClassifier
Input
P, P, ..., P,: sets of patterns.
Output
The classifiers CA;, CAy, ..., CA4;.
L : The lookup table containing the pseudo-exhaustive bits
of the attractors of each of the CA classifying the pattern
set into P, P, ..., P.
begin
Let TempClass) and TempClassy be two temporary sets of patterns.
for 1 =1 to k do
begin

TempClass; := P,

TempClassy 1= ¢

for j := 1 to k do
TempClassy = TempClassy U P;;

TempClassy := TempClassy - Pi;

CA,;, := TwoCla;sClassifier(ﬂknanUassl, TempClasssy) ;

L; := Concatenation of the bit-streams representing the
number of attractors (b bits) and the pseudo-exhaustive
bits of attractors corresponding to TempClass; or
TempClassy as identified by the TwoClassClassifier.

end
Merge the Look-up tables Li, Ls, ..., L to form
a single look-up table L.
end

Fig. 7. Algorithm to construct a two-class classifier.

Function : IdentifyClassOfPattern
Input
CA;, CAs, ..., CA; : the k classifiers.
L : The lookup table containing the pseudo-exhaustive bits
of the attractors of each of the CA classifying the pattern
set into P, P, ..., B.
p : the pattern whose class is to be identified.
Output
The k-bit OutputRegister with " bit set
if the pattern p belongs to class F;.

begin
Clear OutputRegister
for each CA; [Vie€e1l, ..., k] do

begin
Load the C'A; with pattern p;
Run the CA for 1 clock cycle;
z = Pseudoexhaustive bits of the attractor of P;
Search L for z;
if found

then OutputRegister{:] := 1;
end;
return OutputRegister;
end.

Fig. 8. Function to identify class of a pattern in two-class classification.

cells It can handle patterns of size up to 16 bits, and can irthe basic building block has been shown in Fig. 9. The details
plement a CA-based classifier that has atmost 256 attractors.dDéach the components are outlined next.

course, for larger sized patterns and/or higher number of attrac-1) pattern Register(PATT-REGJhe 16-bit pattern register
tors, two or more such blocks can be cascaded. The structure of  to hold the pattern, whose class has to be identified.
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PATTERN REGISTER ( PATT-REG)
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Fig. 10. Horizontal cascading of two-class classifiers.

2) Array of Cells: This is a regular array o x 16 cells

3)

Each row of the array realizes one of the nonzero rows of
theT-matrix. It may be recalled that each nonzero row of
the T-matrix of the CA implies thexor of some of the
bits of the pattern to be classified. Each cell consists of
a multiplexer and arxor gate. The control line of the

multiplexer is programmed to select the bjt if b; is ] .
present in the corresponding row Bimatrix, otherwise B- Horizontal Cascading
To classify patterns of width more than 16 bits, two or more
from the multiplexer, the other input comes from tb& such building blocks can be cascaded horizontally. A typical
neighboring cell Similarly, output of thexor-gate goes horizontal cascading scheme has been shown in Fig. 10. The
pattern to be classified is broken down into 16-bit subpatterns.
Left Boundary LinesThese lines act as the left neighborgach of these subpatterns are fed to one of the cascaded building
of the leftmost cells. Normally, these should be setto zerblocks. ThePseudo-exhaustive Line$ a block are connected
The lines help in horizontal cascading discussed later. to theLeft Boundary Linesf the next block in the sequence.

it passes a “0.” One of the inputs to tker-gate comes

to theright neighbot

SET OF PATTERN REGISTERS

]

8x 16 XOR ARRAY

* TO RIGHT NEIGHBOUR

PSEUDO
EXHAUSTIVE
LINES

4) Pseudo-exhaustive LineShese lines are the outputs of

the rightmost cells. These lines will contain the pseudo-
exhaustive bit pattern for the attractor, the basin of which

contains the pattern to be classified. Hence, these lines

can be used to search in the external lookup table. These

lines can also be used for cascading.
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PATTERN SET TABLE Il

RESULTS OFCLASSIFICATION WITH CA-BASED TWO—CLASS CLASSIFIER ON
‘ ‘ I l h RANDOMLY GENERATED PATTERNS

Pattern | Number of | Number of | Mgrs | Mca | (Mspa — Mca)/Mspa
. . . Size patterns in | patterns in | (bits) | (bits) x100%
') ' class-1{nl) | class-2(n2)
—_ 18 14 99 79 20.20
— - 31 37 218 | 218 0
7 50 25 176 | 176 0
— e 39 41 274 274 0
8x 16 XOR ARRAY 71 30 211 | o 0
123 23 185 | 185 0
21 12 97 61 37.11
» - > 8 31 9 73 49 32.88
=) 28 15 122 99 18.85
o 2 17 15 121 | 106 12.40
g I ) 5 18 20 163 97 40.49
3 Qo 16 25 145 61 57.93
g5 ——e — £ 9 20 30 181 | 103 43.09
4 5] 40 60 361 297 | 17.73
— —* 5 60 90 541 | 541 0
E 8x 16 XOR ARRAY % 15 25 151 217 0
-] [ 35 50 351 | 331 5.70
. > = 10 60 40 401 | 352 12.22
s = 80 60 601 | 601 0
3 * * * 60 90 601 | 601 0
E g 15 25 166 118 28.92
35 50 386 | 316 18.13
i1 65 45 496 | 451 9.07
. . . 85 60 661 | 601 9.08
100 100 1101 | 1101 0
‘ ‘ ‘ 15 25 81 | 127 29.83
35 50 421 | 298 29.22
g - 12 65 45 541 451 16.64
| - 85 60 781 | 661 15.36
100 100 1201 | 1097 8.66
8x 16 XOR ARRAY 35 50 436 | 265 41.89
65 45 58 | 379 35.32
! — - A\ 13 85 60 846 | 601 28.96
- 100 100 1301 | 1068 17.91
120 135 1561 | 1345 13.84
Fig. 11. Vertical cascading of two-class classifiers. 35 50 401 11 265 46.03
100 100 1401 | 1079 22.98
14 120 110 1541 | 1178 23.56
. . 130 140 1821 | 1549 14.94
C. Vertical Cascading 170 200 9381 | 2353 118
3 3
Vertical cascading is required when the number of nonzetr ;,3 23 3?15 47& iiS.i
rows of theT'-Matrix is more than eight. In this case, each of the 15 1 -~ 1500 | 1008 288
. . . . D ] .
building blocks realizes a subset of nonzero rowd dflatrix. 160 140 2101 | 1795 14.56

The pattern to be classified is fed to tRATT-REG A typical

vertical cascading scheme has been shown in Fig. 11. ) ) ) ]
to be ofb bits. In the straight-forward approach it suffices to

D. A Combined Cascading Scheme note the class of all patterns of eithBy or F». This requires

in(n1, n2) x b) bits. An extra bit is required to determine

. . .. . I
A Co”.‘b'”ed casc;admg scheme °°“tf"““'f‘g both h.O”ZO”Q(/a ether the patterns stored are i&f or . Hence, the total
and vertical cascading has been shown in Fig. 12. This sche %’nory requirement is

can handle patterns of larger than 16 bits. As has been state ]
above the pattern is broken down into subpatterns of 16 bits and Mspa = min(ny, ng) x b+ 1.
are applied parallely to the classifiers. Owing to vertical ca®n the other hand, let a classifier based on CA possesd-
cading, the classifier presented in Fig. 12 can handle those sitactors containing patterns ¢ anda. attractors containing
ations in which the number of nonzero rows of fhieMatrix is  patterns ofP.. If the number of pseudo-exhaustive bits of the
more than eight. attractors bern, then the total memory requirement is
Mca = min(ay, as) x m+ 1.
Table Il notes some of the results for two-class classification
The classification technique has been implemented in C on randomly generated data sets. The CA-based approach on
a Dec Alpha workstation with 175 MHz clock frequency anén average requires 19.83% lesser memory than the straight-
32 MB main storage. In order to judge the performance of tlierward technique. For some cases, the saving in memory space
CA-based classifier, we have compared the memory requiis-seen to be as high as 65.04%. However, in some situations,
ment of the scheme with th&traight Forward Approach (re- CA-based approach does not save any memory. This situation
ferred to asSFAin the remaining section) that stores the classccurs when the patterns are such that the characteristic matrix
of each pattern directly. for the classifier CA becomes equal to the identity matrix (all
Letn; andns be the number of patterns in the two clasBgs states are single cycle attractors). That is, the pattern bits cannot
and P, respectively, to be classified. Each pattern is assumbd combined effectively usingor-logic to reduce the required

VI. EXPERIMENTAL RESULTS
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Fig. 12. Combined cascading of two-class classifiers.

TABLE IV
RESULTS OFCLASSIFICATION WITH CA-BASED MULTICLASS CLASSIFIER ON
RANDOMLY GENERATED PATTERNS

Pattern | Number of | Number of | Msps | Mca | (Msra — Mcoa)/Mspa
Size patterns(n) | classes(k) | (bits) | (bits) *x100%
95 3 855 577 32.51
70 4 630 511 18.89
7 125 5 1250 876 29.92
82 7 820 619 24.51
98 8 980 747 23.78
33 3 330 208 36.97
51 5 561 339 39.57
8 110 6 1210 967 20.08
143 9 1716 1210 29.49
187 12 2244 1582 29.50
507 "4 5577 | 4603 17.46
65 5 780 503 35.51
9 447 6 5364 3993 25.56
103 7 1236 835 32.44
303 9 3939 2807 28.74
642 3 7707 6453 16.27
893 5 11609 | 8985 22.60
10 141 6 1833 1322 27.88
184 7 2392 1840 23.08
483 10 6762 4935 27.02
71 4 923 569 38.35
175 5 2450 1747 31.22
11 440 6 6160 4857 21.16
168 7 2352 1697 27.85
431 8 6034 | 4703 22.06
70 3 980 590 39.80
188 5 2820 | 2008 28.79
12 273 7 4095 2965 27.59
179 8 2685 | 1861 30.69
253 10 4048 | 2528 37.55
103 3 1545 985 36.25
154 4 2310 | 1570 32.03
13 135 6 2160 | 1204 44.26
95 7 1520 797 47.57
72 5 1152 572 50.35
127 4 2032 1192 41.34
128 6 2176 1210 44.39
14 73 5 1241 551 55.60
119 8 2023 859 57.54
88 10 1584 693 56.25
213 3 3621 2051 43.36
120 6 2160 1164 46.11
15 146 10 2774 1432 48.38
140 4 2380 1157 51.39
103 5 1854 901 51.40

number of bits. In this situation, probably a different encoding

of pattern features will yield better results.

For multiclass classification, with classes’;, P, ---, P,
havingny, no, ---,ny patterns, respectively, the memory re-
quirement of the straight-forward approach is

k
Mspa = Z n; X (b+ Ig k)
=1

That is to say, it stores all the patterns and their classes. On the
other hand the CA-based approach will require memory for the
individual Two-Class Classifiers. Since the number of attractors
stored for the individual classifiers is not fixed, this information
is also to be kept. Hence an additiofaH+ 1) bits will be re-
quired each of thé classifiers. Thus the total memory require-
ment will be
k
Mca = Z (min(a;1, a;2) X m; +b+1).
i=1
Table IV notes down the result for multiclass classification.
On an average, the CA-based approach requires 34.51% lesser
memory than the straight-forward strategy. In some situations,
it can show upto 57.54% saving of memory.

VIl. SOME PRACTICAL APPLICATIONS OFCA-BASED
CLASSIFIER

In this section we present two applications of the CA-based

pattern classifier for VLSI circuit testing.

1) Analog Circuit Fault DetectionFault verification and
testing of analog circuits can be an important practical ap-
plication of the CA-based classifier, presented in [23]. As
an example, we consider a low-pass filter having transfer
function

as® +bs+c
T(s) = ————
(5) ds? +es+ f

where the parameters b, ¢, d, ¢, f depends oz, C
components of the circuit and the gaif),;. By varying
these components of the circuit, the stability of the cir-
cuit may be controlled. Consider that,i,, buin, Cmin,
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R Bi cuit corresponding to the faults in the different partitions
7 are grouped separately, each group forming a class. The
\_ process helps in locating a probable faulty section of the
Vingy —— 0 R . o Voul® circuit. Hence the classification scheme based on CA can
J be employed, which will point to faulty partition(s), given
c Ci the faulty response of the circuit [24].

VIIl. CONCLUSION

This paper enumerates an efficient classification scheme
Im[GH(s)] based on CA. It saves, on an average, 34.51% memory as
e compared to the direct storing of pattern classes. The design
,H\l J has been specified in Verilog and simulated for functional
BNAARN correctness. The regular, modular, and cascadable structure of
N the classifier makes the scheme ideal for VLS| implementation.
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