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Abstract—We present an innovative protocol combining in-
network data aggregation and smart meter billing for a smart
grid scenario. The former enables an energy supplier to allocate
and balance resources. The latter provides dynamic pricing
schemes according to fine-grained consumption profiles. More-
over, smart meters and their energy supplier can prove their
billing values. Since the energy supplier knows the amount of
generated electricity and the consolidated consumption in a round
of measurements, the energy supplier can detect energy loss and
fraud. To preserve customers’ privacy, we use a homomorphic
commitment scheme with a homomorphic encryption scheme.
All data sent from a meter to any other component in the
communication network is either a commitment or an encrypted
message. To provide security and privacy, we only require
software modifications, leaving the hardware of the smart grid
unchanged.

Index Terms—Smart Grid, Privacy, Security, Homomorphic
Commitment, Homomorphic Encryption.

I. INTRODUCTION

Worldwide the interest in smart grids is increasing since
their progressive approach provides remote measurements of
electric energy consumptions. Frequent measurements allow
an improvement of the power load by adjusting the electricity
generation to a predicted power demand. Consequently, energy
suppliers can avoid backup power plants and reduce the CO2

emissions. Furthermore, fine-graded consumption data enable
to trade electricity at different tariffs, so-called smart meter
billing. At times of the day with high generation of electricity
by renewables or less electricity consumption, energy suppliers
can offer a lower tariff. Thus, customers could save money,
for instance, by recharging the batteries of their electric cars
at low costs.

On the opposite, fine-graded consumption data enable an
adversary to draw conclusions regarding the habits of the
customers. Greveler et al. [1] show that smart meters could
even be used to identify which TV channel the customers
are watching. This is possible because televisions generate a
specific pattern of electric energy consumption according to
the presented image. To protect customers’ privacy, energy
suppliers could request measurements from smart meters for

larger time intervals, for instance, hourly, daily, or weekly.
However, they need frequent measurements to predict the
energy consumption and to improve the efficiency of the
electric power network.

An approach to protect privacy is the use of batteries that
allow the energy supplier to receive frequent measurements
from smart meters while the customers’ privacy is preserved.
However, this approach is quite expensive, because the battery
should be large enough to support all appliances in the
household and each household needs to buy and install its
own battery.

Another approach is to protect the billing information [2]
and the aggregation of customers’ measurements in a neigh-
borhood [3]–[12]. Normally, smart meters are wireless and can
communicate with each other using a communication protocol.
Thus, they can use homomorphic encryption to aggregate the
measurements and compute their total electricity consumption,
namely, the consolidated consumption. This process is known
as in-network data aggregation and addresses the problem
of frequent measurements [3]. However, aggregation of mea-
surements do not solve the privacy problem of smart meter
billing, because the supplier has to generate a separate bill
for each customer. Most publications that focus on privacy
either concentrate on frequent measurements of the electricity
consumption with aggregation [3]–[12] or address the dynamic
pricing schemes by smart meter billing [2]. In this paper, we
cover both aspects: data aggregation and smart meter billing.
We introduce a protocol that offers both functions without
violating customers’ privacy.

Instead of sending the amount of used electricity to the
supplier, the meter commits to its measurement Com(m, r),
where m denotes the measured consumption and r some
random value. A commitment scheme allows the meter to
commit to a consumption in a way that it cannot change
the value later on while keeping the measured consumption
hidden. Further, each meter encrypts its measurement Enc(m)
using an asymmetric encryption scheme and the public key of
the supplier. The meters compute the encrypted consolidated
consumption using in-network data aggregation for a set of



households
∏

Enc(mi)= Enc(
∑
mi). Due to the homomor-

phic properties of some public-key encryption schemes, this
is possible without allowing an adversary to draw conclusions
regarding the electricity usage per household. In addition,
each meter sends its encrypted decommitment value Enc(r)
to the network that homomorphically adds all received values,
resulting in the aggregated decommitment values

∏
Enc(ri)=

Enc(
∑
ri). Furthermore, each meter sends its commitment to

its supplier, and the last meter in the aggregation also sends
the encrypted consolidated consumption and the encrypted
sum of decommitment values to the supplier. We show that
using an encryption scheme and a commitment scheme, which
are homomorphic over the same group, both encrypted values
constitute the opening values of the product of commitments∏

Com(mi, ri) = Com(
∑
mi,

∑
ri). After decrypting the

consolidated consumption and the decommitment value, the
supplier can use this property to verify the correctness of all
received commitments before computing them for billing.

After a predefined time interval, for instance, a month or
a week, the supplier computes a commitment for the total
amount each customer has to pay. To generate one bill, the
supplier just multiplies all commitments received from one
meter, that is

∏
Com(mj , rj)

T = Com(
∑
tj ·mj ,

∑
tj · rj),

where vector T = (t1, t2, . . . , tn) denotes the price per round
of measurements. In the meantime, each meter computes the
corresponding opening values

∏
Enc(mj)

T = Enc(
∑
tj ·mj)

and
∏

Enc(rj)
T = Enc(

∑
tj · rj), respectively, and sends

them to the supplier. By decrypting the received data and open-
ing the commitments, the supplier can verify the correctness
of the total amount to pay

∑
tj ·mj .

The main contribution of this paper is the introduction
of a protocol combining data aggregation and smart meter
billing. The former enables the supplier to allocate and to
balance resources and the latter to provide dynamic pricing
schemes according to fine-graded consumption profiles. In
comparison with previous smart billing schemes like [2], we
do not need a privacy component per household but use in-
network aggregation that processes data sent by several meters.
Furthermore, running the aggregation protocol the supplier can
collect enough information to verify the bills but is not able
to reveal the individual measurements. Furthermore, using our
protocol, it is not necessary to store and manage a record
of commitments but only the latest opening values. In this
paper, we give an explanation of our protocol and discuss the
improvements in comparison with existing solutions.

This paper is structured as follows. In Section II, we
explain two existing privacy-preserving protocols: one for data
aggregation and another one for smart meter billing. In Section
III, we present our improved protocol. Finally, we compare
the related work in Section IV and present the conclusions in
Section V.

II. BACKGROUND

In this section, we provide a short description how data
aggregation and smart meter billing could be performed. Due
to the large variety of approaches [2]–[13], we concentrate on

two specific solutions, the proposal for data aggregation by Li
et al. [3] and the smart billing protocol introduced by Jawurek
et al. [2]. The comprehension of these two protocols facilitates
to understand our proposal.

A. Data Aggregation
Li et al. [3] introduce a privacy-preserving solution for

in-network data aggregation. They use the Paillier Cryp-
tosystem [14], which is an additive homomorphic public-
key encryption scheme. Furthermore, to solve the malleability
introduced by the homomorphic property, Li et al. [4] propose
the additional use of homomorphic signatures allowing non-
repudiation. In both papers, in-network data aggregation is per-
formed, i.e., all meters participate in the aggregation process
by carrying out the following steps.

1) Each meter i encrypts its measurement with the supplier’s
public key Enc(mi).

2) The meters aggregate their encrypted measurements with
the encrypted measurements received from other meters.
More precisely, the meter i aggregates its measurement
with the measurements received from meters i − 1 and
i − 2, by computing Enc(mi) · Enc(mi−1) · Enc(mi−2).
Due to the homomorphic property of the used encryp-
tion scheme, the encrypted measurements are added up,
resulting in Enc(mi +mi−1 +mi−2).

3) The meter i sends the encrypted sum of the measurements
by meters i, i− 1, and i− 2 to the next meter.

4) After all meters aggregated their measurements, the last
meter sends the result to the supplier.

Having a set of K meters, the supplier receives

Enc(m1)·Enc(m2)· · · · ·Enc(mK) = Enc(m1+m2+· · ·+mK),

and decrypts

Dec(Enc(m1 +m2 + · · ·+mK)) = m1 +m2 + · · ·+mK ,

the sum of the consumption of all K meters.

B. Smart Meter Billing
Jawurek et al. [2] present a privacy-preserving smart meter

billing protocol. They use Pedersen Commitments [15] to
allow the supplier to verify the correctness of the bill while a
Privacy Component (PC) computes the invoice. Each meter is
connected to its own PC that communicates with the supplier.

To generate a bill, a meter computes and signs a com-
mitment Commj = Com(mj , rj) for the consumption
mj measured at round j. Its respective PC receives the
tariff per round tj from the supplier and receives the
signed commitment Commj and the opening values mj

and rj from its meter. After j ∈ [1 . . . L] rounds of mea-
surements, the PC has the signed vector of commitments
COMM = (Comm1, Comm2, . . . , CommL), the measured
values (m1,m2, . . . ,mL), the random values used in the
commitments (r1, r2, . . . , rL), and the tariff vector T =
(t1, t2, . . . , tL). Then, the PC computes

P =

L∑
j=1

mj · tj



and

r′ =

L∑
j=1

rj · tj .

Afterward, the PC sends P , r′, and COMM to the supplier.
Due to the homomorphic property of Pedersen Commitments,
the supplier can generate the commitment to the bill by
computing

COMMTariff =

L∏
j=1

COMM
tj
j .

The invoice P computed by the PC is correct, if the supplier
can open the commitment COMMTariff using the opening
values P and r′. It proves that Com(P, r′) = COMMTariff .
Furthermore, it can detect a cheating PC by verifying the
signatures of the commitments.

III. PROTOCOL PROVIDING DATA AGGREGATION AND
SMART METER BILLING

In this section, we describe our protocol with the require-
ments, assumptions, and cryptographic primitives. At the end
of this section, we have a short discussion about alternative
cryptographic primitives and fraud detection.

A. Requirements for Smart Grids

Our protocol addresses the two basic requirements: data
aggregation and smart meter billing.

1) Data aggregation: To provide electricity consumption
forecast and new services in the power grid, the supplier needs
to receive the consolidated consumption from a set of smart
meters on demand.

2) Smart meter billing: Customers should be billed ac-
cordingly to a dynamic pricing scheme based on supply and
demand. It implies that the energy price floats over the time.
Furthermore, the values used in the billing should be the same
as used in the aggregation.

B. Assumptions

We assume that each meter has a small memory to store
data but is able to compute commitments, encryptions, and
signatures. This assumption is fairly standard [2], [3]. A
signature scheme may be used to provide integrity of the
messages sent. Furthermore, we assume that each meter can
communicate with at least one other meter and can receive a
measurement request from the supplier. Moreover, the initial
parameters, such as cryptographic keys, should be installed in
a tamper-resistant meter.

C. Cryptographic Primitives

Our protocol uses three cryptographic primitives.
• A homomorphic commitment scheme used by meters to

commit to their measurements.
• A homomorphic public key encryption scheme that

allows meters to communicate the corresponding opening
values privately to the supplier.

• A signature scheme that ensures the integrity and au-
thenticity of the data sent.

A commitment scheme has the functions Com and Unv such
that Com(m, r) = c ∈ C commits to a measurement m ∈
M using a randomly chosen decommitment value r ∈ R.
The function Unv(c,m, r) returns the measurement m, if c
is a correct commitment to m and r, and false (⊥), if not.
Further, commitment schemes provide the following security
properties.
• Correctness, i.e., Unv(Com(m, r),m, r) = m for any
m ∈M and r ∈ R.

• Computational Bindingness, i.e., given a commitment
c = Com(m, r), the probability to find a second pair
m′ ∈ M and r′ ∈ R with m 6= m′ such that
Com(m, r) = Com(m′, r′) is negligible.

In our protocol, we need the commitment scheme to have the
following two additional properties.
• Homomorphic, i.e., the commitment scheme has to be

additively homomorphic such that

Com(m, r) ·C Com(m′, r′) = Com(m+M m′, r +R r
′)

for all m,m′ ∈ M and r, r′ ∈ R, where ·C , +M, and
+R define operations in C,M, and R, respectively. Note
that

Com(m, r)n = Com(n ·M m,n ·R r),

for all n ∈ N∗, m ∈ M, and r ∈ R, where ·M and ·R
define operations in M and R, respectively.

• Unconditional Hidingness, i.e., having a pair of mea-
surements m,m′ ∈ M, the distribution of the cor-
responding commitments Com(m, r) and Com(m′, r′)
must be identical when r, r′ ∈ R are chosen uniformly
at random.

A homomorphic public key encryption scheme provides the
two algorithms Enc and Dec with message space M′. The
function Enc(m, s) encrypts a message m ∈ M′ using a
public key and randomness s ∈ R′. The function Dec(c)
denotes the decryption of a ciphertext c = Enc(m, s) to a
message m ∈M′ with the corresponding secret key. Further-
more, the used scheme should provide semantic security and
be homomorphic in M′ such that

Enc(m) · Enc(m′) = Enc(m+M′ m′)

and
Enc(m)n = Enc(n ·M′ m)

for all m,m′ ∈ M′ and n ∈ N∗, where +M′ and ·M′

define operations in M′. For our protocol to work, we need
two instances of the encryption scheme. One is EncM that is
homomorphic over message space M, and another is EncR
that is homomorphic over randomization group R of the used
commitment scheme.

Note that having a commitment scheme and a matching
encryption scheme providing the requirements above, two
measurements m,m′ ∈ M and two random values r, r′ ∈
R can be processed as follows: assume that we have two



commitments c = Com(m, r) and c′ = Com(m′, r′) and
their encrypted opening values (EncM(m), EncR(r)) and
(EncM(m′),EncR(r

′)). We can compute the encrypted open-
ing values for the commitment c · c′ = Com(m+m′, r + r′)
by

EncM(m) · EncM(m′) = EncM(m+m′)

and
EncR(r) · EncR(r′) = EncR(r + r′).

As instantiation of the commitment and encryption scheme,
we use the construction proposed by Moran and Noar for
their Split-Ballot voting system [16, Appendix A]. Their
approach uses the Paillier Cryptosystem [14] in combination
with slightly adapted Pedersen Commitments [15] such that
the measurement and randomization space, M and R, of the
commitment scheme are equal and correspond to the Paillier
Cryptosystem over message space M′. In this paper, we just
provide high-level information about both primitives. More
information regarding their construction and security analysis
may be found in [14] and [15].

Using the Paillier Cryptosystem, the measurement m ∈
M′ = ZN is encrypted by Enc(m) = Enc(m, s) = γm ·
sNmodN2, where s ∈ R′ = Z∗N is a random value, N = p1p2
is the product of two safe primes, and γ ∈ Z∗N2 is a
randomly chosen generator. The public key is (N, γ), and the
corresponding private key is generated using the safe primes
p1 and p2.

Using Pedersen Commitments, a commitment to measure-
ment m ∈ Z∗p with random value r ∈ Z∗p is generated by
Com(m, r) = gm · hr, where g and h are two randomly
chosen generators in Z∗p. Like proposed in Split-Ballot, we
adapt the Pedersen Commitment scheme such that it takes
place in the order N subgroup of Z∗4N+1, where 4N + 1 is a
prime number. Note that computing discrete logarithm is an
intractable problem, if p1 and p2 are sufficiently large primes.

A signature scheme provides the functions Sig and Ver and
uses a key pair consisting of a private key sk to sign messages
and a public key pk to verify signatures. More precisely, the
algorithm Sigsk(W ) = u generates a signature to message W
and the function Ver(u,W, pk) returns W , if u is a correct
signature for W , and ⊥, if not. In this paper, we do not
provide details regarding the used signature scheme, because
any secure signature scheme that is currently deployed for
smart meters can be used together with our protocol.

D. Protocol Specification

We divided our protocol in three main parts: initialization,
data aggregation, and billing verification.

1) Initialization: To set up the protocol, the parameters
for the cryptographic primitives have to be chosen and the
public parameters have to be stored in the meters. First, the
supplier generates two safe primes, p1 and p2, and computes
its private key and its public key for the Paillier Cryptosystem.
Then, the supplier generates the corresponding parameters for
the Pedersen Commitment scheme. Note that the meters can

verify, whether N = p1p2 is a product of safe primes or not,
without knowing the primes [17].

2) Data Aggregation: Assume that we have a set of i ∈
[1 . . .K] meters and j ∈ [1 . . . L] rounds of measurements,
for each round j the following steps are performed.

i) Each meter i
a) commits to the measurement mi,j in the round j using

a random value ri,j by computing Com(mi,j , ri,j) =
ci,j ;

b) signs the commitment Sigski
(ci,j , j) = si,j and sends

the result directly to the supplier;
c) sends the encrypted measurement EncM(mi,j), and the

encrypted random value EncR(ri,j) to the next meter.
ii) Throughout in-network aggregation, the meters

a) compute the product of all encrypted opening values
K∏
i=1

EncM(mi,j) = EncM

(
K∑
i=1

mi,j

)
= EncM(Mj)

and
K∏
i=1

EncR(ri,j) = EncR

(
K∑
i=1

ri,j

)
= EncR(Rj);

b) send EncM(Mj) and EncR(Rj) to the supplier
throughout the last meter.

iii) The supplier
a) verifies the signature of all received commitments and

computes their product
K∏
i=1

ci,j =

K∏
i=1

Com(mi,j , ri,j)

= Com

(
K∑
i=1

mi,j ,

K∑
i=1

ri,j

)
= Cj ;

b) decrypts EncM(Mj) and EncR(Rj) revealing the con-
solidated consumption of the K households, Mj =∑K

i=1mi,j , and the sum of the used decommitment
values, Rj =

∑K
i=1 ri,j ;

c) verifies whether Mj and Rj open Cj , more precisely,
it checks whether

Unv(Cj ,Mj , Rj) 6=⊥;

d) updates the commitments stored from each meter for
billing by computing Ui,j = Ui,j−1 · (ci,j)tj for
i ∈ [1..K], where tj denotes the tariff for electricity in
round j. Note that when a new billing interval begins,
Ui,0 is initialized with 1.

iv) The meter i updates the stored billing data by computing

EncM(M ′i,j) = EncM(M ′i,j−1) · EncM(mi,j)
tj

and

EncR(R
′
i,j) = EncR(R

′
i,j−1) · EncR(ri,j)tj .

At the beginning of a new billing interval, the values
EncM(M ′i,0) and EncR(R

′
i,0) are initialized with 1.



Note that if the supplier can open the commitment, it
proves that the consolidated consumption Mj decrypted by the
supplier corresponds to the sum of committed measurements.

3) Billing Verification: Smart billing can be carried out
similar to the protocol described by Jawurek et al [2]. Assume
that the supplier collected the commitments sent by a meter
i over L rounds. In the following, we describe the billing
protocol for meter i where tj denotes the electricity tariff in
round j.

i) The meter i sends the encrypted billing data directly to
its supplier, i.e.,

EncM(M ′i) =

L∏
j=1

EncM(mi,j)
tj

= EncM

 L∑
j=1

tj ·mi,j


and

EncR(R
′
i) =

L∏
j=1

EncR(ri,j)
tj

= EncR

 L∑
j=1

tj · ri,j

 .

ii) The supplier decrypts the data sent by the meters. Fol-
lowing, using the stored commitment

Ui,L =

L∏
j=1

(ci,j)
tj = Com

 L∑
j=1

tj ·mi,j ,

L∑
j=1

tj · ri,j

 .

The supplier verifies whether

Unv(Ui,L,M
′
i, R
′
i) 6=⊥ .

If the supplier can open the commitment, then M ′i is the
total amount that the household of meter i has to pay for
the rounds 1 to L.

iii) The supplier initializes the commitments stored for
billing, i.e.,

Ui,0 = 1, for i ∈ [1..K].

iv) Each meter i resets its opening values, i.e.,

EncM(M ′i,0) = EncR(R
′
i,0) = 1.

E. Alternative Cryptographic Primitives

Our protocol requires a homomorphic commitment scheme
with a matching homomorphic encryption scheme. The solu-
tion by Moran and Naor [16] is currently the best-evaluated
instantiation and uses primitives proposed for smart meters
before. However, this solution has a disadvantage. It uses Pail-
lier Cryptosystem that is time-consuming due to the modular
exponentiation over integer numbers [18]. Another approach
to speed up the processing time is to use the pairing based
scheme proposed by Cuvelier et al. [19].

F. Fraud Detection

The supplier can compare the amount of generated electric-
ity with the consolidated consumption computed throughout
in-network data aggregation. Thus, the supplier can detect
energy loss and fraud. The property of billing verification
allows the customers to ensure that the supplier is charging
them correctly. Furthermore, the supplier is assured that the
meters cannot change the value of a measurement after they
sent the commitment. Note that with Step 2-iii-c the supplier
can verify the consistency between the received commitments
and its measured consumption for a set of meters. This allows
to detect measurement errors before the bill is computed.

IV. COMPARISON WITH RELATED WORK

Security and privacy of smart grids are well-studied topics,
e.g., [2]–[12]. The first paper in this list addresses the problem
of smart meter billing, while the others address the problem
of data aggregation.

To the best of our knowledge, only [13] addresses both prob-
lems. They use anonymous identifiers for the data aggregation
and non-anonymous identifiers for billing. However, their pro-
tocol relies on a Trusted Third Party (TTP) and has an undesir-
able trade-off between privacy and efficiency [20]. Therefore,
protocols based on homomorphic encryption, e.g., [3], [5],
[6], which use the Paillier Cryptosystem, are more interesting,
because they do not have such a trade-off and do not require
a TTP. However, whoever has the key of the supplier can
decrypt single measurements. In addition, protocols based
on homomorphic encryption need to protect the encrypted
measurement against malleability, for instance, by using ho-
momorphic signatures as proposed by [4].

Protocols based on DC-Nets are non-scalable with re-
spect to the number of meters, e.g., [7]–[9]. Some protocols
are also non-scalable with respect to the bit length of the
measurements, e.g., [10]. Motivated by such drawback, [11]
describes a better solution to the problem of data aggregation.
However, [11] as well as [10], [12] are based on TTP to set
up the initial phase.

Our protocol is scalable in the number of meters and their
measurements. We address the problem of data aggregation
and smart meter billing without a TTP. We use a very
specific cryptographic component, a homomorphic commit-
ment scheme with matching homomorphic encryption scheme,
which allows to privately process the data and publicly verify
the outcome. We summarize the comparison of this paper with
related work in Table I.

V. CONCLUSIONS

Smart grids are a very important research topic, because
they allow to use resources more efficiently and to reduce the
negative impact on the environment. Since smart grids would
be deployed on a large scale, the costs are an important fac-
tor. However, while searching for efficient solutions, privacy
should not only take a back seat. Since the implementation is
still in progress, there is the opportunity to introduce privacy



Table I
COMPARISON BETWEEN PRIVACY-ENHANCING PROTOCOLS FOR SMART GRIDS.

Protocol Data Aggregation Smart Meter Billing Initialization without TTP Based on
[2] No Yes Yes Commitment
[3] Yes No Yes Paillier Cryptosystem
[4] Yes No Yes Homomorphic Signature
[5] Yes No Yes Paillier Cryptosystem
[6] Yes No Yes Paillier Cryptosystem
[7] Yes No Yes DC-Nets and Paillier Cryptosystem
[8] Yes No Yes DC-Nets
[9] Yes No Yes DC-Nets
[10] Yes No No Discrete Logarithm
[11] Yes No No Variation of Paillier Cryptosystem
[12] Yes No No Variation of Paillier Cryptosystem
[13] Yes Yes No Pseudonymous
Our model Yes Yes Yes Homomorphic Commitment with Homomorphic Encryption

by design and to prevent that established solutions must be
rebuilt later in order to protect customers’ privacy.

Therefore, we have presented a protocol that describes how
privacy-preserving data aggregation and smart billing can be
performed. The provided protocol grants the benefits of data
aggregation of the measurements and allows billing with time-
based pricing. In addition, customers’ privacy is guaranteed by
a homomorphic encryption with a homomorphic commitment
scheme. All data sent are encrypted to prevent that the com-
ponents in the communication network can violate customers’
privacy and protect against eavesdropping on the communi-
cation channels. The only data that the supplier receives by
each meter individually are unconditional hiding commitments
providing even everlasting privacy. Moreover, we only require
changes on the software. Therefore, our protocol can be used
in conjunction with many existing smart grid communication
models. However, there is still room for improvements. One
example is to find more efficient cryptographic primitives that
can be used to securely process the measurements in a privacy-
preserving way. Another example is to improve the protocol
with respect to the communication complexity to allow for
more fine-grained consumption profiles. We plan to work on
these matters in the future.

REFERENCES
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